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The polyphase filter bank (PFB) is a widely used digital signal processing tool used
for channelizing input from radio telescopes. Quantization of the channelized signal leads
to blow ups in error. We present a practical method for inverting the PFB with minimal
quantization-induced error that requires as little as 3% extra bandwidth.

1 Introduction

Polyphase filter banks (PFBs) are widely used in digital signal processing to provide flat response
within frequency channels and excellent rejection of out-of-band signals. Several current and up-
coming radio arrays (CHIME, HIRAX, ALBATROS, CHORD) will record baseband data that has
gone through a PFB, which will later be post-processed. A regular feature of the post-processing
is to rechannelize data since finer frequency resolution can be provided by the original (usually
FPGA-based) PFBs is often required. The natural way to do this is to invert the PFB to return
to the original electric field samples.

Quantizing the output of a PFB leads to channel-specific loss of information, this causes spurious
time-localized blow ups in the inverted PFB error (cite paper, JS’s write-up). By saving a small
amount of terms of the raw input we are able to re-construct a pretty accurate inverse. This is
accomplished by casting the problem as a chi-squared minimization. We use the conjugate gradi-
ent method to solve it efficiently.

In section 2 we present the forward PFB mathematically, in the language of linear algebra. In
section 3 we cover a first attempt at inverting the PFB and take a look at the errors induced
by quantization. We also briefly discuss a failed attempt at modifying the sinc-hanning window
to rid the virgin PFB of blow-ups in error. In section 4.2 we demonstrate how a signal can be
reconstructed from a minimal amount of data.

2 Forward PFB

For ease of notation n ≡ nchan is the number of output channels of the PFB, m ≡ ntap is the
number of taps, b ≡ lblock = 2(n− 1) is the length of a segment (or ‘block’). Typical numbers are
n = 1025, m = 4 and b = 2048.

The goal of the PFB is to split a stream of electric field data up into frequency channels, where
the response inside a channel is flat, and the response outside the channel dies as quickly as possible.

The ideal thing to do would be to Fourier transform the electric field and average over neigh-
bouring frequency channels (average over ntap channels). This is equivalent to convolving the
output of the DFT’d signal with a boxcar then down-sampling by a factor of ntap. By the discrete
convolution theorem, this is equivalent to fourier transforming the pointwise multiplication of the
original signal with the DFT of the boxcar, and down-sampling that. Down-sampling a fourier
transform (by a factor of ntap) is the same as fourier-transforming a shorter signal, each term of this
shorter signal is just the sum of ntap terms of our original signal. In this way, by reversing the or-
der of operations, we are able to down-sample and compress before executing the fourier transform.
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pointwise multiplied by the , this then cut out a boxcar in Fourier space. The PFB tries to do
this as well and as efficiently as possible given the real-world constraints of digital signal processing.

We would like to
In theory we would like to fourier transform window of length b×m of our electric field timestream,
, decimate the output by a factor of m, slide the window along the signal by b and repeat.

The core computation of the PFB is the successive application of three matrices FSW: F is a
real DFT; S is a horizontal stack of m square b × b identity matrices; it chops up a segment of
raw signal into ntap pieces and sums them pointwise with each other; and W is a square diagonal
window matrix, it multiplies the raw input block by a sinc-hanning window.

W : [g1, · · · , gbm] 7→ [g1 · w1, · · · , gbm · wbm] (1)

The forward PFB takes a signal (a real 1D array) of length kbm, where k is some natural number
(lets say k = 50, in reality k will be on the order of 105). It eats a bm long segment and spits out
n complex values, one for each frequency channel. Then it slides along the input signal by b and
repeats.

Ignoring the FFT component, i.e. considering only the action of SW on the time-stream. Our
forward PFB can be represented in the following way

g(t) = [g1, · · · , gkbm]

−→ [g1, · · · , gbm]
W−→ [g1w1, · · · , gbmwbm]

−→ [gb+1, · · · , gb+bm]
W−→ [gb+1w1, · · · , gbm+bwbm]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−→ [gkbm−bm, · · · , gkbm]
W−→ [gkbm−bmw1, · · · , gkbmwbm]

S−→
S−→
· · ·
S−→

m−1∑
j=0


gjb+1wjb+1 , · · · , gb(j+m)wb(j+m)

gb(j+1)+1wjb+1 , · · · , gb(j+m+1)wb(j+m)

gjb+2b+1wjb+1 , · · · , gb(j+m+2)wb(j+m)

· · · · · · · · ·
gb(km−1)+1wjb+1 , · · · , gkbmwb(j+m)


For clarity we write this block with m = 4 and b = 16 and k = 50


g1w1 + g17w17 + g33w33 + g49w49 · · · g16w16 + g32w32 + g48w48 + g64w64

g17w1 + g33w17 + g49w33 + g65w49 · · · g32w16 + g48w32 + g64w48 + g80w64

· · · · · · · · ·
g3137w1 + g3153w17 + g3169w33 + g3185w49 · · · g3152w16 + g3168w32 + g3184w48 + g3200w64

 (2)

Now the fourier transform. In some implementations (such as Richard Shaw’s python implementa-
tion of the Chime PFB) the S matrix is not applied, instead FW is down-sampled by a factor of m.

In the end the result is the same. Let ↓ represent down-sampling by a factor of ntap ≡ m, and let
Fb be the b× b DFT matrix, then ↓ FbmW = FbSW . To make this evident first observe that they
are both bm× b matrices, and that their action on an arbitrary vector v is the same
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[↓ FWv]k =
bm−1∑
j=0

exp

{
−2πi

mkj

mb

}
wjvj

=
b−1∑
j=0

exp

{
−2πi

kj

b

}(m−1∑
r=0

wbr+jvbr+j

)
= [FSWv]k

Where wj is the jj’th entry of W , we use a single subscript because W is diagonal. There is a
funny thing going on with the indexing when we use rfft, but everything works out. Applying the
real fast fourier transform to an array of even length bm will return an array of length bm/2 + 1.
In the first case when we down-sample we will end up with b/2 + 1 (≡ n) samples, when we
apply FSW we end up with the rfft() swallowing SWv - which has length bm/m = b, thus the
output also has n output channels. It is left as an exercise to show that these are indeed equivalent.

If we flatten the output of the PFB by concatenating each row, the output is practically the same
length as the input time-stream (it’s actually (ntap−1) · lblock shorter, but we can ignore that given
that the input is very long). If we let m = 4, then FSW is the discrete fourier transform of a
stack of four diagonal square matrices SW = [D1, D2, D3, D4]. So we can represent the (row-wise)
inverse fourier transformed PFB as a large almost-square matrix

D1 D2 D3 D4

D1 D2 D3 D4

D1 D2 D3 D4

. . . . . . . . . . . .

D1 D2 D3 D4

 (3)

3 Inverting the PFB, a first attempt

Reminder: for ease of notation we use n = nchan is the number of output channels of the PFB,
m = ntap is the number of taps, lblock = 2(n− 1) = b is the length of a segment.

Inverting the PFB amounts to retrieving the windowed time-stream points gi from the above block
matrix (2). The first column v of this matrix is (4)

h(1) =


g1w1 + g17w17 + g33w33 + g49w49

g17w1 + g33w17 + g49w33 + g65w49

· · ·
g3121w1 + g3137w17 + g3153w33 + g3169w49

g3137w1 + g3153w17 + g3169w33 + g3185w49

←→


∑m−1
j=0 gbj+1wbj+1∑m−1
j=0 gbj+b+1wbj+1

· · ·∑m−1
j=0 gbmk−b(m−j)wbj+1

 (4)

Technically speaking this problem is insoluble. To solve it practically we introduce circulant
boundary conditions by appending the first m− 1 terms of h1 to it’s tail.

Notice that v this is equivalent to the convolution of
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g̃(1) := [g1, g17, g33, · · · , g3121, g3137, g1, g17, g33]

with a flipped, zero padded and rolled ‘chunk’ of window

w̃(1) = [w1, 0, 0, · · · , 0, 0, w49, w33, w17]

Indeed

h(1) := w̃(1) ∗ g̃(1) = [g1w1 + g17w17 + g33w33 + g49w49 , g17w1 + g33w17 + g49w33 + g65w49 , etc.]

Note on the notation: g̃(r)[t] is the t’th element of the r’th recovered time-stream [gr, gr+17, · · · ].
The integer r denotes the channel index. We use r = 1 so that the notation doesn’t become
heavy-handed, but this method works for every channel.

Invoking the discrete convolution theorem (see appendix section 7.4) we see that

F [w̃ ∗ g̃](ξ) ≡ F [h](ξ) = ĥ(ξ) = ŵ(ξ) · ĝ(ξ)

solving for g̃ = F−1G, we recover the original time-stream.

g̃(1)[t] = F−1
[
ĥ(1)(ξ)/ŵ(1)(ξ)

]
[t] = F−1

[
F [h(1)](ξ)/F [w̃(1)](ξ)

]
= [g1, g17, g33, · · · ] (5)

3.1 Quantisation effects

This solution works well if our data is clean and precise. But in practice the vectors h(i) are quan-
tized. Which is effectively the same as introducing Gaussian random noise to ĥ(ξ). Problems arise
when ŵ(i)(ξ) = F [w̃(i)](ξ) approaches zero. i.e. when the fourier transform of [w1, w17, w33, w49, 0, 0, 0, · · · ]
is close to zero (the blue parts in figure 1)
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Figure 1: Left Hand Side: On the x axis we have the irfft (inverse real discrete fourier trans-
form) of the 1025 output channels of the PFB (rem (1025 − 1) × 2 = 2048.) The y axis are
the absolute values of the fourier transforms of the zero padded sinc-hanning window chunks:
DFT[wx, wx+2048, wx+2·2048, wx+3·2048, 0, · · · , 0]. The middle columns have the unfortunate property
that it’s four terms are symmetric wx ≈ wx+3·2048 and wx+2048 ≈ wx+2·2048 the fourier transform
contains zeros.
Right Hand Side: The sinc-hanning window and it’s four segments. One column of the LHS is
generated by concatenating four terms -one from each segment of the corresponding vertical slice
of the RHS image- with many zeros (≈ 1000), applying the rfft and taking the modulus of each
term in the resulting vector.

Lets examine more closely how the mean squared error (MSE) from quantization carries forward.
The effect of quantizing a signal h[n] is for our purposes identical to adding a random variable
x[n] which is a uniform probability distribution on (−∆/2,∆/2]. Where ∆ is the quantization
interval. It is easy to see that the MSE induced from the quantization is ∆2/12 (6)

MSE =
1

∆

∫ ∆/2

−∆/2

dx x2 = ∆2/12 (6)

An important fact that simplifies our lives is that the expected value of the MSE of the discrete
fourier transform of a quantized signal is identical to that of the quantized signal, i.e.

〈|x[n]2|〉 = 〈|x̂[ξ]|2〉 =

〈∣∣∣∣∣ 1√
N

N∑
n=1

x[n]e−2πiξn/N

∣∣∣∣∣
2〉

(7)

since

〈|x̂[ξ]|2〉 =

〈∣∣∣∣∣ 1√
N

N∑
n=1

x[n]e−2πiξn/N

∣∣∣∣∣
2〉

=

〈
1

N

∑
n

x[n]x[n]∗ +
1

N

∑
n>m

(
x[n]x[m]∗ + x[n]∗x[m]

)〉
= 〈〈|x[n]|2〉〉 = 〈|x[n]|2〉

(8)
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The same is true for the inverse DFT. Letting σ2 = ∆2/12 denote the MSE of our output and
channalized signal h (output of forward pfb) and using equation (5) we find the MSE of the
reconstructed signal g̃ (output of the inverse pfb).

MSE(g̃(n)[t]) =
〈∣∣F−1[x̂(ξ)/ŵ(n)(ξ)]

∣∣2〉
=

〈
1

k

k∑
ξ=1

|x̂(ξ)/ŵ(n)(ξ)|2
〉

= 〈x̂2〉 · 1

k

k∑
ξ=1

1

|ŵ(n)(ξ)|2

= σ2 ·R[n]2 · 12 where R[n] :=

√√√√ 1

12 · k

k∑
ξ=1

1

|ŵ(n)(ξ)|2

⇒ RMSE(g̃(n)[t]) = ∆ ·R[n]

(9)

Where x̂ is the same uniform random variable on [−∆/2,∆/2) as before. See figure 2

When ŵ(n)[ξ] has near-zero terms R[n] becomes very large and so too does the the error.

Figure 2: Top: R[n] as described above (9), calculated for three windows. Bottom: the RMSE on
data points from each channel for the virgin IPFB with quantization interval ∆ = 0.5, obtained
via simulation. The fact that the two plots are the same up to a factor of ∆ confirms our above
derivation of R[n].
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3.2 Why do some eigenvalues go to zero?

Let ω[n] be a sinc hanning window of length 4b indexed from −2b to 2b (or indeed a sinc / sinc-
hamming). These windows are symmetric ω[n] = ω[−n]. Now consider the DFT of a real valued
array

[
ω[k − 2b], ω[k − b], ω[k], ω[k + b], 0, 0, 0, 0, 0, · · · , 0

]
, (which corresponds to the k’th column

of eigenvalues from 1.)

F [ω[k−2b], ω[k−b], ω[k], ω[k+b], 0, 0, · · · , 0](k) = ω[k−2b]+ω[k−b]e−2πi k
4b +ω[k]e−2πi 2k

4b +ω[k+b]e−2πi 3k
4b

The value of k ranges from 1 to b (we can ignore k > b/2 because the signal is real, hence FFT
symmetric). As we see from figure 1, the values that are causing trouble by being small are the
ones at the bottom, i.e. when k = b/2. These zeros correspond to symmetric w-chunks. By
symmetry ω[b/2− 2b] = ω[b/2 + b] and ω[b/2− b] = ω[b/2], therefore the above sum is

ω[−3b/2]− ω[−b/2] + ω[b/2]− ω[3b/2] = 0

3.3 Can we modify the PFB window so as to avoid this?

3.3.1 No: a mathematical argument.

Assuming we don’t break the symmetry of the sinc-hanning window ω, i.e. that ω̊[n] = ω̊[−n],
where ω̊[n] is the modified window. Let φ[n] := ω̊[n]− ω[n]. Then we require that the derivative
φ′[n] be very steep in the middle of each of the four segments. If we consider that any eigenvalue
who’s absolute value is below 0.1 is “bad” (these are the eigenvalues responsible for magnifying
the quantization error.) And we want there to be maximum 20 channels of bad eigenvalues (out
of 2048 = 1% of channels). Then we require (10)

10 · φ′[k] > 0.1 (10)

for k = b/2, k = 3b/2. Now consider the fourier decomposition of φ(k)

φ[k] ≈
8000∑
s=1

as sin(sk/16000) (11)

We must keep the side-lobes below 10−7 so that there is minimal leaking. Each term as contributes
approximately to a side-lobe as a delta function at the index of it’s frequency. Therefore we require
that |as| < 10−7 for each s.

10−2
(10)
< |φ′[k]| ≤ 10−7

8000∑
s=1

s

4 · 8000

2

π

≈ 10−7 80002

4 · 8000

1

π
≈ 10−5 << 10−2

(12)

In practice if you use this approach the side-lobes reach up to 10−4 before there is any noticeable
improvement, and there isn’t a way of making the zero eigenvalues disappear entirely without
side-lobes which go the whole way up to 10−2.
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3.3.2 No: by trial and error.

Here is what was tried:

• Gradient descent to optimize the window (a vector of length 8192) with a variety of loss
functions that penalize low eigenvalues and large side-lobes.

• GD in the fourier space of the window, with constraints on the fourier coefficients.

• Using GD to optimize a chebyshev (symmetric with constant term 1) filter.

• Modifying the eigenvalues themselves and re-constructing a window from them. This is a
little bit non-trivial because the eigenvalue space has (2×) more degrees of freedom than the
window space (since they’re complex.)

• Manual tinkering of the window: multiplying by polynomials, breaking the symmetry, apply-
ing hand crafted distortions to the domain before feeding it through a sinc-hanning function.
(this was perhaps unsurprisingly the least successful approach)

For every loss function the gradient descent approach would preserve the symmetry of the window.
Even when seeded with an asymmetric window (usually the starting point was the sinc-hanning
window.)

See gradient descent.py, gradient descent 2.py and loss functions.py in the GitHub repos-
itory, (other failed attempts are scattered in jupyter notebooks, not all pushed.)

4 Correcting the inverse.

4.1 Weiner Filter

4.2 Constructing the most likely inverse-pfb with limited extra band-
width (about 3% extra).

We examine the expected errors in each channel from the ‘virgin’ IPFB described in the previous
section. Using the notation of equation (4)

h(r) = [h(r)[1], h(r)[2], h(r)[3], · · · , h(r)[T ]]

Quantizing h(r)[t] is equivalent to adding uniform noise with standard deviation to both real and
imaginary components. The standard deviation for each component is σ = ∆/

√
12 where ∆ is the

quantization interval.

H(r)[ξ] =
T∑
t=0

h(r)[t]e−2πitξ/T

The uncertainty on h(r)[t] induces an uncertainty in it’s fourier transform H(r)[ξ]. We write
H(r)[ξ] + x̂[ξ] where x̂[ξ] is a Gaussian random variable.

x̂[ξ] ∼ 1√
2πσ2

0

exp

(
−1

2

y2

σ2
0

)
normal dist in y σ0 = ∆/

√
6
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As before the error carries forward

〈g(r)[t]〉 =
〈
F−1[(H(r)[ξ] + x̂(ξ))/W (r)(ξ)]

〉
=

1√
T

∑
ξ

e2πitξ/TH(r)[ξ]/W (r)[ξ]

〈|g(r)[t]|2〉 − 〈g(r)[t]〉2 =
〈∑T−1

ξ=0
|x̂[ξ]|2/|W (r)[ξ]|2

〉 1

T
= σ2

0

〈
1

|W (r)[t]|2

〉
=: σ2

(r) (13)

We also have another T equations, one for each frequency ξ

1√
T

∑
t

e−2πitξ/Tg(r)[t] = (H(r)[ξ] + x̂[ξ])/W (r)[ξ] (14)

g(r)[t] = iDFT
[
(H(r)[ξ] + x̂[ξ])/W (r)[ξ]

]
(15)

Suppose that we know one fifth of the values of the discrete time series g(r)[t] (for instance that
g(r)[0], g(r)[4], g(r)[9], ... are known.)
we cast it as a chi-squared problem (16). This we can minimize approximately and efficiently
using conjugate gradient iterations.

χ2 = (d− Am)TN−1(d− Am) + (p−m)TQ−1(p−m) (16)

Where d is the data (output of forward PFB), m is the input to the PFB which we are solving for,
A is a matrix representing the forward PFB, N−1 is a diagonal quantization noise matrix (with
entries 1/σ2), p is the prior (i.e. our preserved data-points) and Q−1 is a diagonal matrix which
represents the uncertainties in the prior.

Note on Q−1: for ease of notation we represent p as the ground truth with a bit of quantization
noise σ0 (it’s a factor of

√
2 smaller than σ because the quantized terms are real with zero imag-

inary component), so that Q−1 is filled on the diagonal with 1/σ2
0 at those places where we have

preserved the term, and it’s filled with 0 in those places where we have not preserved the data
point (most of them) representing infinite uncertainty.

4.3 RMSE of simulated data with carefully selected 3% extra.

From the output of the PFB we select and preserve every kth term from the q middle-most chan-
nels. The numbers k and q are constrained by how much extra space you have. If k is large we
can also afford to have a large q. We need q to be thick enough to cover the worst channels. And
we need k to be small enough that it sufficiently fixes the contributions from each channel.

Figure 3 shows the root mean squared errors for k = 6 and q such that exactly 3% of the data is
preserved. The results are very promising.
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Figure 3: Root mean squared error estimates calculated by simulating data, which is Gaussian
Noise with sigma=1.0. The data is first passed through the forward IPFB. It then has both real
and imaginary parts quantized with quantization interval 0.5 i.e. a quantization noise sigma of
0.5/
√

12 on each component. Then inverted with the method discussed in section 3, and improved
upon with 3% additional as described in this section (section 4.2). Every 6’th data point is
preserved from the middle 364 channels (out of 2048).

4.3.1 Why does this work?

One way to understand why this works so well is by thinking of a different solution (by construct-
ing a pseudo-inverse PFB matrix from the set of linear equations + the data that we have) that
works in theory but not in practice, and then understanding that our chi-squared method will
perform better than this solution.

If we consider (14) as a linear system of equations we can substitute the known values of g(r) and
remove the need for equations containing small values of W (r)[ξ] (those error magnifying prone
equations) effectively removing problematic eigenvalues as suggested in figure 4.

[change this paragraph, don’t over-generalize, sometimes solving a system of equations w/ pseudo
inverse is a good idea] In this case the pseudo inverse In practice solving a linear system of equa-
tions by computing a pseudo-inverse matrix is not a good idea. And our previous method of
inverting the PFB is already quite good, except for these noise spikes.

Looking at our eigenvalues plot we can see that the most problematic ŵ(r)’s belong to the middle
columns. These correspond to the mid frequency-range output channels.
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Figure 4: Top from left to right: sinc-hamming window eigenvalues, eigenvalues with 1% smallest
blanked, eigenvalues with 3% smallest blanked out.
Bottom: Eigenvalues with 1% blanked out in an implementable way. Eigenvalues with 3% blanked
out in an implementable way.
We take our intuition that knowing one extra data-point is roughly equivalent to replacing the
worst eigenvalue of it’s corresponding column, from the inverse matrix method described in the
appendix, because we expect chi-squared minimization to perform better than numerically com-
puting a pseudo-inverse matrix.

4.4 Conjugate Gradient method for optimizing large quadratic sys-
tems of equations.

[Little intro to conj grad with some pointers / citations to conj grad stuff. Show plot of how well
it performs, and mention edge-effects.]

Figure 5: Estimated RMSE during conjugate gradient descent optimization of chi-squared. It
converges very fast. The initial guess x0 is a virgin IPFB with the badly behaved regions set to
zero (hence the jump in RMSE.)

Missing figures, put the Wiener filter thing in here. Noisy time-s
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5 Discussion

6 Conclusion

7 Appendix

7.1 Discrete Fourier Transform

The discrete fourier transform is a square symmetric matrix operator that acts on a complex or
real vector space F : CN → CN . It’s elements are Fk,l = e−2πi k·l

N /
√
N . It looks like this

F ≡ 1√
N


1 1 1 · · · 1 1

1 e−2πi/N e−2πi 2
N · · · e−2πiN−2

N e−2πiN−1
N

1 e−2πi 2·1
N e−2πi 2·2

N · · · e−2πi
2(N−2)

N e−2πi
2(N−1)

N

· · · · · · · · · · · · · · · · · ·
1 e−2πiN−1

N e−2πi
2(N−1)

N · · · e−2πi
(N−2)(N−1)

N e−2πi
(N−1)2

N

 (17)

Taking the fourier transform of a signal (/ array / vector), with scipy.fft.fft() is equivalent
to multiplying the signal by the above matrix (17). Your computer does this very efficiently using
the ‘fast fourier transform’ which computes it in N logN time – much better than O(N2)!

Note: clearly this matrix is full rank since it’s columns are independent. It is symmetric and it’s
eigenvalues are {±1,±i}.

7.1.1 DFT on a real signal

Suppose g is a real length-N array. The DFT of g is G. By examining

√
NG[j] =

N−1∑
k=0

g[k]e−2πi jk
N

√
NG[N − j] =

N−1∑
k=0

g[k]e−2πi
(N−j)k

N =
N−1∑
k=0

g[k]e2πi jk
N

we notice that the FFT has a the symmetry G[j] = G[N − j]∗. Hence why we can use a more op-
timal DFT algorithm which computes only half the entries when dealing with real arrays; namely
scipy.fft.rfft.

Note: there is a subtlty here, we are indexing starting from zero so the indices are {0, 1, · · · , N−1}.
The above holds for indices j 6= 0. This make sense because the first column is just ones and cannot
be identified with any other column. As a result when if your input array is of length n the output
of rfft will be an array of length n/2 + 1 for even arrays, and (n+ 1)/2 for odd arrays.

7.2 Convolution theorem

Given two Lebesgue integrable functions g(t), h(t) : R → C with fourier transforms G,H resp.,
i.e.

G(x) := F [g](x) =

∫ ∞
−∞

g(t)e−i2πxtdt, H(x) =

∫ ∞
−∞

h(t)e−i2πxtdt, for x ∈ R

then F [g ∗ h(t)](x) = G(x) ·H(x).

13



Proof.

F [g ∗ h(t)](x) = F
[∫ ∞
−∞

g(ξ)h(t− ξ)dξ
]

=

∫ ∞
−∞

dte−2πixt

∫ ∞
−∞

dξg(ξ)h(t− ξ)

fubini
=

∫ ∞
−∞

dξe−2πixξg(ξ)

∫ ∞
−∞

dte−2πix(t−ξ)h(t− ξ)

= G(x) ·H(x)

(18)

Similarly
F−1 [G ∗H(x)] (t) = g(t) · h(t) (a.e. t)

7.2.1 Example: convolving a signal with a boxcar.

Let g(t) : R→ C be a function and G(ξ), it’s fourier transform. Let B(ξ) be a boxcar of width a
in frequency space, i.e.

B(ξ) =

{
1 if |ξ| ≤ a/2

0 if |ξ| > a/2

We can sum frequencies of our signal in a range of width a like so∫ ξ0+a/2

ξ0−a/2
G(ξ)dξ

which is the same as sampling a point from the convolution∫ ∞
−∞

B(ξ)G(ξ0 − ξ)dξ

Invoking the convolution theorem we have

F−1[(B ∗G)(ξ)](t) = g(t) · b(t)

where

b(t) = F−1B =
sin(πta)

πt
= a · sinc(πat)

so we see that convolving the frequency space signal G with a boxcar is the same as fourier
transforming the time series signal multiplied pointwise with the sinc function g(t) · sinc(πat) · a.
Notice that if the window a is large, then sinc(πat) is squished; and if a is small, sinc(πat) will be
quite spread out i.e. there will not be many periods in a given window.

7.3 Discrete Convolutions

The discrete convolution of two 1D arrays g and h of length N is

(g ∗ h)[i] =
N−1∑
j=0

g[j]h[i− j mod N ]

We can think of the finite arrays (or vectors) g and h as representing discrete periodic signals of
period N .

14



7.4 Convolution Theorem for Discrete Periodic signals.

For arrays g, h ∈ CN the following equation is true:

F
[
(g ∗ h)[t]

]
[ξ] = G[ξ]H[ξ] (19)

Where F is the discrete fourier transform, and G = Fg and H = Fh.

Proof.

F
[
(g ∗ h)[t]

]
[ξ] =

N−1∑
t=0

e−2πitξ/N(g ∗ h)[t]

=
N−1∑
t=0

e−2πitξ/N

N−1∑
j=0

g[j]h[t− j]

=
N−1∑
j=0

e−2πijξ/Ng[j]
N−1∑
t=0

e−2πi(t−j)ξ/Nh[t− j]

= G[ξ] ·H[ξ]

7.5 Chi squared revisited

In response to physics stack exchange question.

So your measurements are a bunch of normal distributions or random variables (in y)

vn ∼
1√

2πσ2
n

exp

{
−1

2

(y − µn)2

σ2
n

}
What is the probability (or the ‘relative weight’) of the real being y? Well it’s going to be
proportional to

relative weight(y) = Πn
1√

2πσ2
n

exp

{
−1

2

(y − µn)2

σ2
n

}
Once you’re persuaded yourself the above formula makes sense, notice that to find the most likely
value of y all we have to do is maximize it. Since the logarithm function is monotone increasing
on R+ the maximum of this distribution will remain the same if we just take the log of everything

ln(relative weight)(y) = −1

2

∑
n

(y − µn)2

σ2
n

−
∑
n

ln
(√

2πσ2
n

)
To maximize this we can simplify our lives and discard the constant terms, it’s equivalent to
minimizing

χ2(y) =
∑
n

(y − µn)2

σ2
n

Here y and µn can be vectors too but we will keep things simple and assume they are just real
numbers (also σn). Taking the derivative wrt to y to find extreme of χ2 we find
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d

dy
χ2(y) = 2

∑
n

(y − µn)/σ2
n = 0

⇒ yoptimal =

(∑
n

µn
σ2
n

)/(∑
n

1

σ2
n

)
We know that this corresponds to the optimal value because there is only one extreemum. If all
the sigmas are the same the formula simplifies to

yopt =

∑
n µn/σ

2

N/σ2
=

1

N

∑
n

µn = mean{µn}Nn=1

which is just the mean. Turning our attention to the general case, we wish to find the uncertainty
in yopt. We found yopt in terms of the means µn but we can also sneakily write yopt as a distribution
in the following way.

yopt ∼
∑

n vn/σ
2
n∑

n 1/σ2
n

The variance of the sum is the sum of the variance, thus

var(yopt) =

(∑ 1

σ2
n

)−1

·
∑
n

var(vn)

σ2
n

=

(∑ 1

σ2
n

)−1

and our final standard deviation is

σopt =

√(∑ 1

σ2
n

)−1

The result you are looking for (or at least, that you where looking for eight years ago) is

yopt ± σopt ←→

(∑
n

µn
σ2
n

)/(∑
n

1

σ2
n

)
±

√√√√(∑
n

1

σ2
n

)−1
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7.6 Figures

Figure 6: Top left is a plot of a window which has a desirable eigenvalue spectrum (right) but a
terrible side-lobe problem (bottom).
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7.7 Inverting the PFB for different values of ntap

Figure 7: Link to the code that generates these plots. Using less taps makes the signal harder to
invert.
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